Short Communication

Pyrrolylbenzothiazole Derivatives as Aldose Reductase Inhibitors

NAZLAA ZAHER, IOANNIS NICOLAOU and VASSILIS J. DEMOPOULOS*
Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

(Received 8 January 2002)

Keywords: Aldose reductase; Pyrrolylbenzothiazoles; Diabetes

INTRODUCTION

Activation of the aldose reductase enzyme (AR, ALR2, E.C. 1.1.1.21) of the polyol pathway has suggested that it is implicated in a number of pathological conditions: a) in diabetic patients, for the development of the long term complications of the disease, ${ }^{1}$ and b) in non diabetic individuals, for ischemic myocardial injury, ${ }^{2}$ for abnormal proliferation of vascular smooth muscle cells ${ }^{3}$ (which is an important feature of atherosclerosis, restenosis, and hypertension), and for bipolar and unipolar mood disorders. ${ }^{4}$ Furthermore, about 29% of human liver cancers overexpress AR which might contribute to their resistance to chemotherapy. ${ }^{5}$

Although a considerable number of compounds have been synthesized and shown to be effective aldose reductase inhibitors (ARIs), ${ }^{6}$ the only ARI available as a drug is Ono Pharmaceutical's epalrestat in Japan. ${ }^{7}$ However, as the inhibition of AR is considered to be a quite promising therapeutic target,,$^{8-11}$ the already marketed epalrestat ${ }^{12,13}$ as well as new chemical entities ${ }^{14,15}$ are being investigated in clinical trials.

In the present study, based on the above, (3-benzothiazol-2-yl-pyrrol-1-yl)acetic acid (6) and 4-(benzothiazol-2-yl-2-benzoylpyrrol-1-yl)acetic acid (9) (Scheme 1) were synthesized and tested for AR
inhibitory activity. The design of structure 6 was based on the reported ${ }^{16}$ AR inhibitory ability of (3-benzoylpyrrol-1-yl)acetic acid as well as the putative non-classical bioisosteric relationship between a carbonyl group and the thiazole ring. ${ }^{17}$ Compound 9 combines structural features of 6 and of (2-benzoylpyrrol-1-yl)acetic acid. The latter is also an ARI^{16} although comparatively weaker than its C-3 isomer.

MATERIALS AND METHODS

Melting points were uncorrected and determined in open glass capillaries using a Mel-Temp II apparatus. UV spectra were recorded with a Perkin-Elmer 554 spectrophotometer, IR spectra were recorded with a Perkin-Elmer 597 spectrophotometer and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with a Bruker AW-80 spectrometer with internal TMS standard. Elemental analyses were performed on a Perkin-Elmer 2400 CHN analyser. Flash chromatography was carried out using Merck 9385 silica gel. Petroleum ether refers to the fraction bp $40^{\circ}-60^{\circ} \mathrm{C}$.

1-Benzenesulfonyl-1H-pyrrol-3-carbonyl Chloride (2)

1-Benzenesulfonyl-1H-pyrrole-3-carboxylic acid (1) ${ }^{18}(0.2 \mathrm{~g}, 0.8 \mathrm{mmol})$ was dissolved in THF $(2 \mathrm{~mL})$; DMF $(4 \mu \mathrm{~L})$ and oxalyl dichloride $(0.29 \mathrm{~g}, 1.09 \mathrm{mmol})$ were added and the mixture was stirred under a N_{2} atmosphere for 30 min . The volatile materials were

[^0]

4

$\mathrm{BrCH}_{2} \mathrm{COOEt}$
$\mathrm{NaH}, \mathrm{TDA}-1$

removed under reduced pressure, and the resulting solid was used without further purification in the subsequent step. IR (nujol) $1720 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

2-(1-Benzenesulfonyl-1H-pyrrol-3yl)benzothiazole (3)

1-Benzenesulfonyl-1H-pyrrol-3-carbonyl chloride (2) $(0.32 \mathrm{~g})$ was dissolved in 1-methylpyrrolidin-2-one $(0.7 \mathrm{ml})$ under a N_{2} atmosphere; then 2-aminobenzenthiol ($0.1 \mathrm{~mL}, 0.94 \mathrm{mmol}$) was added at room temperature and the mixture was heated at $100^{\circ} \mathrm{C}$ for

1 h under a N_{2} atmosphere. After cooling, the solution was poured into water and the pH of the mixture was adjusted to $8-9$ by the addition of a 7 N aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution. The precipitate was filtered, washed with water, dried and flash chromatographed with ethyl acetate/petroleum ether (3:1) followed by recrystallization from isopropanol/petroleum ether to afford $0.192 \mathrm{~g}(60 \%$ yield) of a white solid, mp $170^{\circ}-172^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} / \mathrm{d}_{6}\right.$-DMSO) $\delta 6.33-7.05(\mathrm{~m}, 1 \mathrm{H}$, pyrrole C-4H), 7.30-8.30 (m, 11H, Ar-H). Found: C, 59.72; H, 3.62; N , 8.59. $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, requires: $\mathrm{C}, 59.98$; H , $3.55 ; \mathrm{N}, 8.23 \%$.

2-(1H-pyrrol-3-yl)benzothiazole (4)

2-(1-Benzenesulfonyl-1H-pyrrol-3-yl)benzothiazole (3) $(1.36 \mathrm{~g}, 3.98 \mathrm{mmol})$ was dissolved in dioxane $(85 \mathrm{~mL})$ and to this an aqueous solution of NaOH ($5 \mathrm{~N}, 85 \mathrm{~mL}$) was added. The reaction mixture was vigorously stirred at room temperature for 48 h . The organic layer was collected and the aqueous phase was extracted with ethyl acetate $(2 \times 100 \mathrm{~mL})$. The combined organic layer and extracts were washed with saturated aqueous NaCl solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was flash chromatographed with ethyl acetate/petroleum ether (3:1) followed by recrystallization from toluene/petroleum ether to afford $0.51 \mathrm{~g}(64 \%$ yield $)$ of a white solid, $\mathrm{mp} 92^{\circ}-$ $95^{\circ} \mathrm{C}$. IR (nujol) $3200 \mathrm{~cm}^{-1}$ (NH). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} / \mathrm{d}_{6}\right.$-DMSO) $\delta 6.53-7.00(\mathrm{~m}, 2 \mathrm{H}$, pyrrole C-4H and $\mathrm{C}-5-\mathrm{H}), 7.10-7.70(\mathrm{~m}, 3 \mathrm{H}$, pyrrole $\mathrm{C}-2-\mathrm{H}$, benzothiazole $\mathrm{C}-5-\mathrm{H}$ and $\mathrm{C}-6-\mathrm{H}), 7.70-8.13(\mathrm{~m}, 2 \mathrm{H}$, benzothiazole $\mathrm{C}-4-\mathrm{H}$ and $\mathrm{C}-7-\mathrm{H}$), 11.20 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH). Found: C, 65.73; H, 3.68; N, 13.63. $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}$ requires: $\mathrm{C}, 65.98 ; \mathrm{H}, 4.03 ; \mathrm{N}, 13.99 \%$.

(4-Benzothiazol-2-yl-1H-pyrrol-2yl)phenylmethanone (7)

A solution of benzoyl choride ($0.065 \mathrm{~g}, 0.56 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was slowly added to a stirred suspension of anhydrous $\mathrm{AlCl}_{3}(0.1 \mathrm{~g}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, at room temperature and under a N_{2} atmosphere. After 10 min , a solution of 2-(1 H -pyrrol-3-yl)benzothiazole (4) ($0.1 \mathrm{~g}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ was added dropwise at room temperature, and the resulting mixture was stirred for 30 min . The reaction was quenched with a mixture of ice and $\mathrm{H}_{2} \mathrm{O}$ and the product was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 15 mL). The combined organic extracts were washed with saturated aqueous NaCl solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was flash chromatographed with ethyl acetate/petroleum ether (5:1) followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether to afford $0.11 \mathrm{~g}(66 \%$ yield $)$ of a white solid, mp $235^{\circ}-$ $237^{\circ} \mathrm{C}$. IR (nujol) 3275 (NH), $1610 \mathrm{~cm}^{-1}$ (CO). ${ }^{1} \mathrm{H}-$ NMR ($\mathrm{CDCl}_{3} / \mathrm{d}_{6}$-DMSO) $\delta 7.08-7.68(\mathrm{~m}, 6 \mathrm{H}$, pyrrole $\mathrm{C}-4-\mathrm{H}$, benzothiazole $\mathrm{C}-5-\mathrm{H}$ and $\mathrm{C}-6-\mathrm{H}$, phenyl-H), 7.68-8.20 (m, 5H, pyrrole C-2-H, benzothiazole C-4H and $\mathrm{C}-7-\mathrm{H}$, phenyl-H). Found: C, 70.49; H, 3.77; N, 9.65. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS} .0 .01 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires: $\mathrm{C}, 70.87$; H , 3.97 ; N, 9.18%. (For the previous calculation, the cocrystallization of $0.01 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was used for the recrystallization of this compound and its presence was also evident in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, was taken into account).

General Procedure for the Preparation of Compounds (5) and (8)

To a cold (ice bath), stirred and under a N_{2} atmosphere mixture of either compound 4 or compound $7(1 \mathrm{mmol})$ and TDA-1 $(0.05 \mathrm{~mL}$, $0.16 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$, was added bromoacetic acid ethyl ester ($0.2 \mathrm{~mL}, 1.8 \mathrm{mmol}$) and NaH (50% dispersion in mineral oil) $(0.06 \mathrm{~g}, 1.5 \mathrm{mmol})$ and the resulting mixture stirred at room temperature for 24 h . After this period, it was poured into a stirred, ice cold, mixture of $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and 5% aqueous HCl solution $(30 \mathrm{~mL})$, the two phases separated and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic phase and extracts were washed with 10% aqueous NaHCO_{3} solution $(2 \times$ 10 mL), saturated aqueous NaCl solution and dried (anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$). The solvents were evaporated under reduced pressure and the residue was flash chromatographed with ethyl acetate/petroleum ether ($5 / 1$) followed by recrystallization from CH_{2} Cl_{2} /petroleum ether.
(3-Benzothiazol-2-yl-pyrrol-1-yl)acetic acid ethyl ester, 5: 0.195 g (68% yield) as a white solid, mp 102° $104^{\circ} \mathrm{C}$. IR (nujol) $1740 \mathrm{~cm}^{-1}$ (COOEt). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.24\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.60-6.96(\mathrm{~m}, 2 \mathrm{H}$, pyrrole $\mathrm{C}-4-\mathrm{H}$ and $\mathrm{C}-5-\mathrm{H}), 7.12-7.68(\mathrm{~m}, 3 \mathrm{H}$, pyrrole $\mathrm{C}-2-\mathrm{H}$, benzothiazole C-5-H and C-6-H), 7.68-8.16 (m, 2H, benzothiazole $\mathrm{C}-4-\mathrm{H}$ and $\mathrm{C}-7-\mathrm{H}$). Found: C, 62.40; H, 4.54; $\mathrm{N}, 10.16 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} .0 .01 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires: C , 62.77; H, 4.92; N, 9.76\%.
(4-Benzothiazol-2-yl-2-benzoylpyrrol-1-yl)acetic acid ethyl ester, 8: 0.195 g (50% yield) as a white solid, mp $95-97^{\circ} \mathrm{C}$. IR (nujol): 1720 (COOEt), $1610 \mathrm{~cm}^{-1}$ (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.24(\mathrm{q}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.16-7.70(\mathrm{~m}, 7 \mathrm{H}$, pyrrole $\mathrm{C}-2-\mathrm{H}$ and $\mathrm{C}-4-\mathrm{H}$, benzothiazole $\mathrm{C}-5-\mathrm{H}$ and C-6-H, phenyl-H), 7.80-8.20 (m, 4H, benzothiazole $\mathrm{C}-4-\mathrm{H}$ and $\mathrm{C}-7-\mathrm{H}$, phenyl-H). Found: C, 67.56; H, 4.31; N, 7.20. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ S requires: $\mathrm{C}, 67.68 ; \mathrm{H}, 4.65$; N, 7.17\%.

General Procedure for the Preparation of Compounds 6 and 9

A mixture of either compound 5 or compound 8 (2.48 mmol), dioxane $(10 \mathrm{~mL}$) and aqueous NaOH solution $(5 \%, 10 \mathrm{~mL})$ was stirred at room temperature for 1 h . After this period, it was concentrated to half of its volume, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ added and the mixture cooled (ice bath) and acidified with concentrated aqueous HCl solution. The precipitate formed was collected by filtration and the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic phase was washed with saturated aqueous NaCl solution and evaporated under reduced pressure.

TABLE I Aldose reductase inhibitory activity

Inhibitor	Concentration \% Inhibition (SEM) ${ }^{\text {a }}$			$\begin{gathered} \mathrm{IC}_{50}^{\mathrm{d}} \\ 10^{-8} \mathrm{M} \end{gathered}$
	$10^{-6} \mathrm{M}$	$10^{-7} \mathrm{M}$	$10^{-8} \mathrm{M}$	
6	80\% (4.0)	63\% (0.8)	40\% (2.0)	4.9 (0.4)
9	94\% (2.0)	53\% (3.2)	36\% (1.0)	4.5 (0.5)
$\mathrm{I}^{\text {b }}$	27\% (2.0)			$250{ }^{\text {e }}$
II ${ }^{\text {c }}$	36% (2.0) at: $10^{-5} \mathrm{M}$			$2500^{\text {e }}$
sorbinil		48\% (0.5) at: $2.5 \times 10^{-7} \mathrm{M}$		$25^{\text {e }}$

${ }^{\mathrm{a}} \mathrm{n}=3 .{ }^{\mathrm{b}}$ (3-Benzoylpyrrol-1-yl)acetic acid. ${ }^{\mathrm{c}}\left(2\right.$-Benzoylpyrrol-1-yl)acetic acid. ${ }^{\mathrm{d}}$ Mean (standard error from 3 determinations). ${ }^{\mathrm{e}}$ The data are from Reference 16.

The residue was combined with the precipitate and recrystallized from isopropanol/petroleum ether.
(3-Benzothiazol-2-yl-pyrrol-1-yl)acetic acid, 6: 0.615 g (96% yield) as a white solid, $\mathrm{mp} 241.5^{\circ}-242^{\circ} \mathrm{C}$. IR (nujol): 3300-2500 (OH), $1690 \mathrm{~cm}^{-1}$ (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} / \mathrm{d}_{6}\right.$-DMSO) $\delta 4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.50-6.90(\mathrm{~m}$, 2 H , pyrrole $\mathrm{C}-4-\mathrm{H}$ and $\mathrm{C}-5-\mathrm{H}$), $7.10-7.50(\mathrm{~m}, 3 \mathrm{H}$, pyrrole $\mathrm{C}-2-\mathrm{H}$, benzothiazole $\mathrm{C}-5-\mathrm{H}$ and $\mathrm{C}-6-\mathrm{H}$), 7.70-8.00 ($\mathrm{m}, 2 \mathrm{H}$, benzothiazole $\mathrm{C}-4-\mathrm{H}$ and $\mathrm{C}-7-\mathrm{H}$). Found: C, 60.13; H, 3.46; N, 11.25. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires: $\mathrm{C}, 60.45 ; \mathrm{H}, 3.90 ; \mathrm{N}, 10.85 \%$.
(4-Benzothiazol-2-yl-2-benzoylpyrrol-1-yl)acetic acid, 9: $0.728 \mathrm{~g}(79 \%)$ as a white solid, $\mathrm{mp} 228^{\circ}-229^{\circ} \mathrm{C}$. IR (nujol): $3300-2500(\mathrm{OH}), 1710(\mathrm{COOH}), 1610 \mathrm{~cm}^{-1}$ (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{d}_{6}\right.$-DMSO) $\delta 5.20(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 7.09-8.26(\mathrm{~m}, 11 \mathrm{H}, \mathrm{ArH})$. Found: C, 64.72; H, 4.24; N, 7.67. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} .0 .5 \mathrm{H}_{2} \mathrm{O}$ requires: $\mathrm{C}, 64.67$; H, 4.07; N, 7.54\%.

In Vitro Aldose Reductase Enzyme Assay

The test compounds 6, 9, (3-benzoylpyrrol-1-yl)acetic acid, (2-benzoylpyrrol-1-yl)acetic acid, and sorbinil (reference) were dissolved in 0.2 M NaHCO 3 . Lenses were quickly removed from Fischer-344 rats of both sexes following euthanasia, and enzyme preparation and assay were performed as previously described ${ }^{16,19}$ with few modifications. Specifically, the total volume of the reaction mixture was 1.1 mL , and the added volume of the solution of the test compounds at the desired concentration was $34 \mu \mathrm{~L}$. To generate IC_{50} values, compounds 6 and 9 were tested at five concentrations. Log-doseresponse curves were then constructed from the inhibitory data and IC_{50} values calculated by leastsquares analysis of the linear portions of log doseresponse curves $\left(0.933<\mathrm{r}^{2}<0.977\right)$. All experiments were performed in triplicate. Results are shown in Table I.

RESULTS AND DISCUSSION

The steps for the synthesis of $\mathbf{6}$ and 9 are shown in Scheme 1. Main points of the preparation were the
use of a catalytic amount of DMF for the conversion of acid 1 to its corresponding chloride, ${ }^{20}$ the employment as solvent in the formation of the benzothiazole ring the weakly basic 1-methylpyrro-lidin-2-one (NMP), ${ }^{21}$ and the utilization of the phase transfer catalyst tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1) for the introduction of the acetate moiety into the pyrrole ring. ${ }^{16}$

The synthesized target compounds 6 and 9 were tested in vitro for their ability to inhibit rat lens AR. It has been shown that there is an approximately 85% sequence similarity between rat lens and human $A R$, while the proposed active sites of both enzymes are identical. ${ }^{22}$ The performed assay was based on the spectrophotometric monitoring of NADPH oxidation, which has proved to be a quite reliable method. ${ }^{23}$

It was found (Table I) that both compounds 6 and 9 inhibit AR with potencies comparable, or moderately lower, to those of known inhibitors. This is supported by literature IC_{50} values, cited in parentheses, for some well studied inhibitors such as sorbinil $\left(7^{24}, 25^{16}, 23^{19}, 90^{25} \times 10^{-8} \mathrm{M}\right)$, tolrestat $\left(3.5 \times 10^{-8} \mathrm{M}^{26}\right)$, epalrestat $\left(1 \times 10^{-8} \mathrm{M}^{27}\right)$, zopolrestat $\left(0.31 \times 10^{-8} \mathrm{M}^{28}\right)$ and fidarestat $\left(3.5 \times 10^{-8} \mathrm{M}^{25}\right)$. Furthermore, compounds 6 and 9 exhibit improved potency on the lead compounds on which their design is based, (3-benzoylpyrrol-1-yl)acetic acid and (2-benzoylpyrrol-1-yl)acetic acid (Table I). Finally, it was noted that the benzoyl substituent in compound 9 did not confer an increase in inhibitory potency. This may indicate the importance of the benzothiazole ring in the enzyme-inhibitor interaction. The benzothiazole ring is a common structural feature in diverse potent ARIs, and it has been proposed ${ }^{28}$ that there is a binding site on AR enzyme with strong affinity for benzothiazoles at some distance from a site that binds to acidic groups. This proposal is also supported from the structure of the human aldose reductase complexed with the potent inhibitor zopolrestat, ${ }^{29}$ where residue Trp-111, which stacks against the A face of the benzothiazole ring, plays a dominant role by making 38 contacts. Furthermore, the side chain of Leu-300 apposes the B face of the benzothiazole.

References

[1] Costantino, L., Rastelli, G., Vianello, P., Cignarella, G. and Barlocco, D. (1999), Med. Res. Rev. 19, 3-23.
[2] Tracey, W.R., Magee, W.P., Ellery, C.A., MacAndrew, J.T., Smith, A.H., Knight, D.R. and Oates, P.J. (2000), Am. J. Physiol.Heart Circul. Physiol. 279, H1447-H1452.
[3] Ruef, J., Liu, S.Q., Bode, C., Tocchi, M., Srivastava, S., Runge, M.S. and Bhatnagar, A. (2000), Arterioscler. Thromb. Vasc. Biol. 20, 1745-1752.
[4] Regenold, W.T., Kling, M.A. and Hauser, P. (2000), Psychoneuroendocrinol. 25, 593-606.
[5] Lee, K.W.Y., Ko, B.C.B., Jiang, A.R., Cao, D.L. and Chung, S.S.M. (2001), Anti-Cancer Drugs 12, 129-132.
[6] Costantino, L., Rastelli, G., Gamberini, M.C. and Barlocco, D. (2000), Expert Opin. Ther. Pat. 10, 1245-1262.
[7] Strupczewski, J.D. and Ellis, D.B. (1993) "To Market, To Market-1992", In: Bristol, J.A., eds, Annual Reports in Medicinal Chemistry (Academic Press Inc., San Diego, USA) Vol. 28, p 330.
[8] Oates, P.J. and Mylari, B.L. (1999), Expert Opin. Invest. Drugs 8, 2095-2119.
[9] Banditelli, S., Boldrini, E., Vilardo, P.G., Cecconi, I., Cappiello, M., dal Monte, M., Marini, I., del Corso, A. and Mura, U. (1999), Exp. Eye Res. 69, 533-538.
[10] Nakamura, J., Kasuya, Y., Hamada, Y., Nakshima, E., Naruse, K., Yasuda, Y., Kato, K. and Hotta, N. (2001), Diabetologia 44, 480-487.
[11] Murata, M., Ohta, N., Sakurai, S., Alam, S., Tsai, J.Y., Kador, P.F. and Sato, S. (2001), Chem.-Biol. Interact. 130(1-3 Special Issue S1), 617-625.
[12] Hamada, Y., Nakamura, J., Naruse, K., Komori, T., Kato, K., Kasuya, Y., Nagai, R., Horiuchi, S. and Hotta, N. (2000), Diabetes Care 23, 1539-1544.
[13] Nakayama, M., Nakamura, J., Hamada, J., Chaya, S., Mizubayashi, R., Yasuda, Y., Kamiya, K., Koh, N. and Hotta, N. (2001), Diabetes Care 24, 1093-1098.
[14] Johnson, B.F., Law, G., Nesto, R., Pfeifer, M., Slater, W., Vinik, A., Wackers, F. and Young, L. (1999), Diabetes 48(S1), 574.
[15] Hotta, N., Ishii, J. and Sakamoto, N. (2000), Diabetes 49(S1), 142.
[16] Demopoulos, V.J. and Rekka, E. (1995), J. Pharm. Sci. 84, 79-82.
[17] Rosen, T., Nagel, A.A., Rizzi, J.P., Ives, J.L., Duffeh, J.B., Ganong, A.H., Guarino, K., Heym, J., McLean, S., Nowakowski, J.T., Schmidt, A.W., Seeger, T.F., Siok, C.J. and Vincent, L.A. (1990), J. Med. Chem. 33, 2715-2720.
[18] Xiao, D. and Ketsa, D.M. (1995), Org. Prep. Proced. Int. 27, 503-506.
[19] DeRuiter, J., Swearingen, B.E., Wandrekar, V. and Mayfield, C.A. (1989), J. Med. Chem. 32, 1033-1038.
[20] Boger, D.L. and Patel, M. (1987), J. Org. Chem. 52, 2319-2323.
[21] Brembilla, A., Roizard, D. and Lochon, P. (1990), Synth. Coттии. 20, 3379-3384.
[22] Gui, T., Tanimoto, T., Kokai, Y. and Nishimura, C. (1995), Eur. J. Biochem. 227, 448-453.
[23] Del Corso, A., Costantino, L., Rastelli, G., Buono, F. and Mura, U. (2000), Exp. Eye Res. 71, 515-521.
[24] Kador, P.F. and Sharpless, N.E. (1983), Mol. Pharmacol. 24, 521-531.
[25] Oka, M., Matsumoto, Y., Sugiyama, S., Tsuruta, N. and Matsushima, M. (2000), J. Med. Chem. 43, 2479-2483.
[26] Sestanj, K., Bellini, F., Fung, S., Abraham, N., Treasurywala, A., Humber, L., Simard-Duquesne, N. and Dvornik, D. (1984), J. Med. Chem. 27, 255-256.
[27] Terashima, H., Hama, K., Yamamoto, R., Tsuboshima, M., Kikkawa, R., Hatanaka, I. and Shigeta, Y. (1984), J. Pharmacol. Exp. Ther. 229, 226-230.
[28] Mylari, B.L., Larson, E.R., Beyer, T.A., Zembrowski, W.J., Aldinger, C.E., Dee, M.F., Siegel, T.W. and Singleton, D.H. (1991), J. Med. Chem. 34, 108-122.
[29] Wilson, D.K., Tarle, I., Petrash, J.M. and Quiocho, F.A. (1993), Proc. Natl. Acad. Sci. 90, 9847-9851.

[^0]: *Corresponding author. Tel.: +30310997626. Fax: +30310997626. E-mail: vdem@pharm.auth.gr

